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Abstract—A new straightforward enantiospecific synthetic procedure to both 10-methylenecamphor and 10-methylenefenchone,
from (+)-camphor and (−)-fenchone, respectively, is described. 10-Methylenecamphor is the key intermediate in Paquette’s
approach to taxol and taxusin, whereas 10-methylenefenchone could be a convenient intermediate to a new family of potentially
interesting taxoids. The key steps of the described procedure are: (a) stereocontrolled tandem electrophilic carbon�carbon
double-bond addition-Wagner–Meerwein rearrangement of a camphor- or fenchone-derived 2-methylenenorbornan-1-ol under
Eschenmoser’s salt treatment, and (b) Cope elimination for generation of the vinyl group at the bridgehead norbornane position.
© 2002 Elsevier Science Ltd. All rights reserved.

Taxane diterpenes, such as the well-known taxol 1,
taxusin 2 or taxinini 3 (Fig. 1), are an important family
of isolated yew-tree natural products with special bio-
logical activities.1 Thus, taxol, which discloses a unique
remarkable capacity for stabilizing microtubule assem-
bly and deterring cell division,2 is one of the most
important drugs against a number of human cancers
(e.g. in refractory ovarian, breast and lung cancers);3

whereas taxusin, taxinini and other taxanes are known
to inhibit the drug-transport activity of P-glycoprotein,4

showing valuable multi-drug resistance-reversing
activity.5

The complex basic structure of taxanes, a tricarbocyclic
moiety containing an anti-Bredt carbon�carbon double
bond as well as a large number of oxygenated asymmet-
ric centers (see Fig. 1), makes their synthesis very
complicated. Thus, taxanes remain as some of the most
challenging targets in natural-product synthesis.6

Among the most interesting approaches to taxanes,6 the
elegant approach of Paquette must be outlined.6i–k This
approach has been used for the total synthesis of
natural (−)-taxol and (+)-taxusin and it is based on the
use of (1S)-10-methylenecamphor 4a as a key interme-
diate (Scheme 1).6i–k Unfortunately, although interme-
diate 4a is obtained from commercial 10-camphor-
sulfonyl chloride 5 with good yield (71%), according to
the procedure described by Fischer and Opitz in 1973,7

it requires the use of dangerous diazomethane to form
an unstable episulfone intermediate (Scheme 1).7

On the other hand, we have recently reported on the
enantiospecific preparation of (1S)-10-dimethylamino-
methylcamphor 6a by Eschenmoser’s salt treatment
of (1R)-3,3-dimethyl-2-methylenenorbornan-1-ol 7a
(Scheme 2).8 The process takes place with an interesting
tandem electrophilic carbon�carbon double-bond addi-
tion - Wagner–Meerwein rearrangement.8 Intermediate
7a is easily obtained from commercial natural (1R)-
camphor 8a according to a procedure previously
described by us.9

Figure 1. Some interesting taxane diterpenes.
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Scheme 1. Paquette’s approach to taxanes.

We have now used amino ketone 6a for the enantiospe-
cific preparation of the taxane-intermediate, enone 4a
(Scheme 2). Thus, the treatment of 6a with m-CPBA
affords the corresponding N-oxide 9a in excellent yield
(95%).10 Subsequent Cope elimination in DMSO gives
the desired (1S)-10-methylenecamphor 4a in good yield
(Scheme 2) (80%).11 The overall procedure constitutes a
new straightforward route for the enantiospecific prepa-
ration of the valuable intermediate 4a from natural
(1R)-camphor (Scheme 2).

According to the above, we have also obtained interest-
ing (1R)-10-methylenefenchone 4b, which has been pre-
viously prepared from natural fenchone 8b in low
overall yield (20%).12 Enone 4b, an analogue of 4a
(3,3-dimethylated instead of 7,7-one, see Scheme 2)
could be used as an intermediate in Paquette’s route for
the preparation of new interesting taxoids (10,10-
dimethylated instead of the common 15,15-dimethyl-
ated taxanes, see Fig. 1) with unexplored and poten-
tially interesting biological activities.13

The new preparation of 4b has been realized starting
from (1S)-7,7-dimethyl-2-methylenenorbornan-1-ol 7b,
easily obtained from commercial natural (1R)-fenchone
8b.14 Thus, when the 2-methylenenorbornan-1-ol 7b is
treated with Eschenmoser’s salt, (1R)-10-dimethyl-
aminomethylfenchone 6b is obtained in ca. quantita-
tive yield (97%).15 Subsequent treatment with m-CPBA
acid affords corresponding N-oxide 9b (96%),10 which
is subjected to Cope elimination to obtain the desired
(1R)-10-methylenefenchone 4b (75%).11

In summary, a new enantiospecific route to 10-
methylenecamphor 4a and 10-methylenefenchone 4b is
described. The procedure takes places in five straight-
forward steps avoiding the use of dangerous diazo-
methane, which is used in the previously described
procedures.7,12 Enone 4a is now obtained with a slightly
lower overall yield than that obtained with the Fischer–
Opitz procedure (67% versus 71%), but advantageously,
starts from the less expensive (1R)-camphor instead of
10-camphorsulfonyl chloride.7 On the other hand,

Scheme 2. New enantiospecific procedure to taxoid-intermediate 10-methylenecamphor and 10-methylenefenchone.
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enone 4b is obtained in higher yield than the previously
reported protocol (54% versus 20%).12 Enone 4b could
be used as key intermediate for the preparation of new
unexplored taxoids, as analogous 4a is used for taxol
and taxusin.6i–k Moreover, we have enantiospecifically
obtained for the first time 10-dimethylaminomethylfen-
chone 6b, which can be used as interesting precursor of
other C(10)�C-substituted fenchone-derived chiral
sources.8
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